
The SRS Pagination Suite

User Guide

Version Date Comment
0.1 Jan 2006 Draft for review by beta testers

Insight Statistical Consulting Ltd
Tile Barn

High Haden Road
Glatton

HUNTINGDON PE28 5RU
Great Britain

Tel: +44 (0) 1487 830838
Email: srs@isc-ltd.co.uk

Web: http://www.isc-ltd.co.uk/software/srspagination

1 INTRODUCTION ..1

1.1 Overview ...1

1.2 System requirements ...1

1.3 Typical workflow ...1

1.4 Changes from previous version ..2

2 INSTALLATION AND REGISTRATION...2

3 USING THE SRSPAGINATOR .. 2

3.1 Forced line breaks, superscripts, subscripts and ODS inline formatting...3
3.1.1 Forced line breaks ..3
3.1.2 Superscripts and subscripts ..4
3.1.3 ODS inline formatting..4

3.2 Using the command line interface (CLI) ...5
3.2.1 Calling the PaginateCLI Java class...5

3.3 The SRSPaginator log..6

3.4 The text file ...11
3.4.1 The purpose of the text file ..11
3.4.2 Limitations of the text file..11
3.4.3 The structure of the text file...11

3.5 The row file...14
3.5.1 The purpose of the row file ..14
3.5.2 The structure of the row file...15

3.6 Parameters of the SRSPaginator CLI..15
3.6.1 The –in <filename> parameter ...15
3.6.2 The –out <filename> parameter ...15
3.6.3 The –log <filename>parameter ..15
3.6.4 The –debug <value> parameter ...16
3.6.5 The –nolog parameter ..16
3.6.6 The –noconsole parameter ...16
3.6.7 The –licence parameter ..16
3.6.8 The –environment parameter ...16
3.6.9 The –cli parameter ...16

3.7 Using the JAVAOBJ construct ...17

4 USING THE SRSFORMATTER ...17

4.1 What the SRSFormatter does ...17

4.2 Counting pages in Microsoft Word..19

4.3 The SRSFormatter log file ..19

4.4 Using the SRSFormatter to alter a table’s appearance..............................21

4.5 Command line options...22
4.5.1 -in <filename>..22
4.5.2 -out <filename>..22
4.5.3 -log <filename>..23
4.5.4 -NoLockFields ...23
4.5.5 -Debug <x> ..23
4.5.6 -Noconsole ...23
4.5.7 -Nolog ..23
4.5.8 -NoConvertSectionBreaks ...23
4.5.9 -NoFWidth ...23
4.5.10 -NoTimer..24
4.5.11 -Reformat ...24
4.5.12 -NoFlag ..24
4.5.13 -doc ..24
4.5.14 -rtf ..24
4.5.15 -FullTimer ..24
4.5.16 -FileConverter <name> ..25
4.5.17 -Visible ...25
4.5.18 -BSepCols (<comma-separated-list>)..25
4.5.19 -HSepCols (<comma-separated-list>) ...25
4.5.20 -SepCols (<comma-separated-list>) ..25
4.5.21 -cli <filename> ...25
4.5.22 -printer..26
4.5.23 -printertype ...26
4.5.24 -pagemethod <value> ..26
4.5.25 -pagecount <value>..26

5 EXAMPLES..26

5.1 A simple listing using the %paginateCLI macro..27

5.2 The same listing built from scratch..29

5.3 Forcing line breaks ..31

5.4 Superscripts and other special characters...34

5.5 Inline formatting ..36

5.6 A table that requires custom pagination..38

5.7 Master-detail presentations: two tables on one page..................................40

5.8 Using the –sepcols command line parameter ..43

6 THE CLIENT/SERVER UTILITY ..44

6.1 Installing the client/server utility..45

6.2 Running the server process ...45

6.3 Parameters of the server process ..45
6.3.1 -port <port number>...45
6.3.2 -debug <n> ...45
6.3.3 -log <log file name> ..46
6.3.4 -srsformat <file name>...46
6.3.5 -srspaginate <file name> ..46
6.3.6 –echo ..46
6.3.7 –noecho ..47

6.4 The SRS server log file ..47
6.4.1 Example 1: A single conncetion request..47
6.4.2 Example 2: A second connection request arrives before the first job has
completed...48
6.4.3 Example 3: Two client requests arrive almost simultaneously................49

6.5 Running a client process..49

6.6 Parameters of the SRS client utility ...49
6.6.1 -server <servername> ..50
6.6.2 -port <port number>...50
6.6.3 -debug <debug level> ..50
6.6.4 -clientlog <client log file name> ..50
6.6.5 –srsformat ..50
6.6.6 -srspaginate ..50
6.6.7 -bye ..50
6.6.8 -srsformatter ...50
6.6.9 -srspaginator ...51

6.7 The client log file ..51

6.8 The SRS client/server utility: examples ...51

6.9 Licencing the client/server utility ...51

7 TROUBLE SHOOTING..51

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-1

All material copyright © 2006 Insight Statistical Consulting Ltd

1 Introduction

1.1 Overview

The SRSPagination suite is a utility to assist in the accurate pagination of SAS output.
It consists of two parts: the SRSPaginator is a Java utility that calculates the amount
of vertical space required to print a given text string in a given font and the
SRSFormatter is a Windows executable that moves titles and footnotes from the
header and footer sections to the body of an RTF file created by SAS. Optionally, it
will convert the RTF file to a Microsoft Word document or Adobe PDF file. The
SRSPaginator can be used when using any of the SAS printable output destinations:
RTF, PDF, PostScript, and even HTML or a user-written destination. The
SRSFormatter, however, requires an RTF file as input.

Both the SRSPaginator and the SRSFormatter are easily incorporated into SAS code:
in SAS 9, the SRSPaginator can be called directly using the data step JAVAOBJ
construct in SAS 9, or by spawning a sub-process that calls the command line
interface to the main paginator class. The SRSFormatter can be called from within
SAS by spawning a sub process using the X statement.

As it is written in Java, the SRSPaginator will function on any platform for which
Java version 1.4.2 is available. The SRSFormatter, being a Windows executable,
requires a 32-bit Microsoft Windows operating system such as Windows 98, 2000 or
XP.

Both the SRSPaginator and the SRSFormatter can be called on a remote server or run
on the local machine.

Example programs and utility macros are included as part of the installation.

1.2 System requirements

The entire SRSPagination suite requires SAS version 8.2 or later.

The SRSPaginator requires Java Runtime Environment (JRE) 1.4.2 or later when
using the paginatorCLI class to access the actual Paginator class through a
command line interface or spawned process. JRE 1.4.2 is required to call the
Paginator class directly using the JAVAOBJ construct in SAS 9: later versions of the
JRE are not supported. Note also that JAVAOBJ is an experimental feature of SAS:
correct functionality is not guaranteed.

The SRSFormatter requires a Windows 32-bit operating system such as Windows 98,
ME, 2000 or XP. The SRSFormatter has been tested with Micorsoft Word 2000 and
Word 2003. it should work with any version of Word 2000 and later.

**** Need to check on MS Office installation requirements ****.

1.3 Typical workflow

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-2

All material copyright © 2006 Insight Statistical Consulting Ltd

The SRS Pagination Suite can easily be incorporated into existing workflows. A
typical scenario would run along the following lines

1. Prepare your data for presentation in the normal way.
2. Call the SRSPaginator to calculate the amount of vertical space required to

render each observation in your dataset.
3. Create a variable to indicate the physical page on which each observation is to

appear
4. Create the RTF output file in the normal way. (If using the REPORT

procedure, include your page variable as a non-printing group variable with an
appropriate COMPUTE AFTER block.)

5. Call the SRSFormatter to reposition titles and footers.

Notes
Steps 2 and 3 are easily combined: either in a single data step using the JAVAOBJ
facility or by using the %paginateCLI utility macro included with the SRS Pagination
Suite.

1.4 Changes from previous version

This is a new document. In future, the main changes from the previous version will
be summarised here and will be indicated by change bars in the outside margin of
each page.

2 Installation and Registration

Install utilities are provided for both Microsoft Windows and Unix/Linux. Detailed
installation instructions are given in the accompanying Installation Guide, which you
will find in the zip file downloaded from the ISC website.

Regardless of the operating system used to run the SRS Pagination Suite, you will be
required to register your installation with Insight Statistical Consulting Ltd (ISC).
This is done by means of an email sent to ISC during the installation process. You
will be able to view the contents of the email before it is sent if you so wish. You will
not be able to use the SRS Pagination Suite until you have registered your installation
with ISC.

3 Using the SRSPaginator

The SRSPaginator can be run in three ways:

1. Directly from the command line
2. By spawning a sub process from a SAS job using the X command
3. By instantiating a data step JAVAOBJ object with the main Paginator Java

class

The first two options are functionally equivalent and will be discussed together.
Using the Paginator Java class via the data step JAVAOBJ construct is in many ways

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-3

All material copyright © 2006 Insight Statistical Consulting Ltd

simpler than using the CLI, but as the JAVAOBJ statement is only experimental in SAS
9.1.3, it cannot be recommended for production jobs at the present time.

There is no need to alter the value of the system CLASSPATH variable to use the SRS
Pagination Suite: wrapper programs are provide for both Windows and Unix
operating systems that create the correct local environment without altering any global
settings.

3.1 Forced line breaks, superscripts, subscripts and ODS inline
formatting

The SRS Paginator can interpret a limited number SAS inline formatting commands,
line break requests and other special characters.

Whilst the SRS Pagination Suite can, in theory be used to correctly paginate RTF,
PDF and PostScript files, it can only interpret native formatting commands for RTF
files. The other formats are too complicated for a cell-based utility to handle
correctly. Nevertheless, the SRSFormatter can be used to convert RTF files to PDF or
PostScript in some circumstances. (See ***** for details.)

When using the ODS, the handling of special characters and other formatting requests
is controlled by the setting of the ODS PROCTECTSPECIALCHARS style attribute:
setting PROTECTSPECIALCHARS=ON, the default, means that special characters
prevented from being interpreted by the output destination as control words. When
PROTECTSPECIALCHARS=OFF, the reverse is true. The same is true with the
Paginator and PaginatorCLI classes. When accessing the Paginator class
directly, using the JAVAOBJ data step construct, value of PROTECTSPECIALCHARS can
be altered on a cell-by-cell (or column-by-column) basis using the
setProtectSpecialChars() method. When using the PaginatorCLI class,
PROTECTSPECIALCHARS is set for the entire report using the protectspecialchars
attribute of the filedef element and at the cell level using the
protectspecialchars attribute of the corresponding cell element. These attributes
can be accessed using the defaultprotectspecialchars and
protectspecialchars parameters of the %paginateCLI macro. However, the
protectspecialchars parameter of the %paginateCLI macro acts on an entire
column rather than an individual cell: to control the value of protectspecialchars at the
cell level when using the PaginatorCLI class, the txtfile will need to be created using
custom code.

3.1.1 Forced line breaks

Line breaks can be forced in RTF files by emitting the \line or \par control words.
\line emits a line break, \par emits a paragraph mark. For this reason, it is better to
use the \line control word with the SRS pagination Suite: because the effect of the
\par control word will depend on the attributes of the paragraph style in the default
template, and thus may vary between installations or vary within the same installation
over time. Example 5.2 demonstrates how the SRSPaginator correctly interprets the
effect of the \line RTF control word.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-4

All material copyright © 2006 Insight Statistical Consulting Ltd

3.1.2 Superscripts and subscripts

The ODS ESCAPECHAR character can be used in conjunction with the
PROTECTSPECIALCHARS style attribute to create special effects, such as superscripts
and subscripts in output files. The SRS Pagination Suite can handle superscripts and
subscripts produced using ODS inline formatting. However, the RTF specification
does not define how the font size is adjusted when superscripts and subscripts are
emitted: it is left to the individual RTF reader to render the output as it sees fit.
Therefore, the SRS Paginator cannot guarantee that its results will be accurate when
measuring super- or subscripted text.

The superScale field of the Paginator class controls how the SRS Pagination Suite
handles superscripts and subscripts. The superScale field takes values between 0
and 1, and indicates the scaling factor by which the current font size should be altered
when rendering superscripted or subscripted text. The default value is 0.67, which
appears to work well when the RTF reader is Microsoft Word. When accessing the
Paginator class using the data step JAVAOBJ construct, the value of superScale can
be altered and checked using the setSuperScale() and getSuperScale() methods.
When using the PaginatorCLI class, the default value of the superScale field
cannot be changed.

Example 5.4 shows how the SRS Pagination Suite correctlys handle superscripts and
subscripts.

3.1.3 ODS inline formatting

The Paginator class correctly interprets common font changes induced by the ^S={}
ODS inline formatting command. Exceptions are described below. It can also
correctly handle the ^{dagger} ODS inline formatting command. Other ODS or RTF
command sequences are (correctly) ignored when the PROTECTSPECIALCHARS style
attribute is ON. When the PROTECTSPECIALCHARS style attribute is OFF and the
Paginator class encounters a command that it cannot interpret, it ignores the
command (that is assumes that it occupies no space in the output file) and writes a
warning to the log file.

The online documentation for the SAS output Delivery System describes many font
attribute settings that are supported by only a very limited number of fonts. The SRS
Pagination Suite does not support these rarely used attributes. If such an attribute
setting is encountered, the SRS Pagination Suite writes a warning to the log and
continues processing.

Style element Supported
style attributes

Unsupported style
attributes

Comments

font_face All installed
fonts

SAS supports HTML-like font
names as a comma
delimited list, enclosed in
quotes. The SRS Pagination
Suite does not: only a single
font name may be specified.
Enclose the name in quotes
if the font name consists of

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-5

All material copyright © 2006 Insight Statistical Consulting Ltd

Style element Supported
style attributes

Unsupported style
attributes

Comments

more than one word.
Quotes are optional for
single word font names.

font_weight Bold, medium Light, demi-light,
extra-light, extra-bold,
demi-bold

font_style Roman, Italic slant
font_width normal, compressed,

extra-compressed,
narrow, wide,
expanded

Different font widths can
often be obtained by
specifying a different font
name. For example “Arial
Narrow” instead of “Arial”
and font_width=narrow.

Table 1: Font attributes supported by the SRS Pagination Suite

Note: The font= style element is not supported by this version of the SRS Pagination
Suite.

Example 5.5 shows how the SRS Pagination Suite handles font changes induced by
inline formatting commands.

3.2 Using the command line interface (CLI)

The SRSPaginator command line interface is a Java class (PaginatorCLI) that reads
an XML file containing the text to be paginated, calls the main Paginator Java class
to derive the necessary information and then creates a second XML file containing the
derived pagination information. It is the users responsibility to create the input XML
file and to process the output XML file. The %paginateCLI utility macro supplied
with the SRS Pagination Suite simplifies the process for many simple and complex
situations by handling the creation of the input file, the parsing of the output file and
the updating of the input dataset automatically. Novice users may prefer to read ****
immediately, as the remainder of this section deals with the technicalities of using the
PaginateCLI class directly: in most situations this is not required as the
%paginateCLI macro will take care of the details automatically.

3.2.1 Calling the PaginateCLI Java class

The simplest form of call to the PaginateCLI class is as follows

SRSpaginateCLI.exe –in <inputfilename>

Note: On Unix/Linux systems, replace SRSPaginateCLI.exe with
SRSPaginateCLI.sh.

In the example programs supplied with the SRS Pagination Suite, the global
macro variable SRSPaginateCLI is defined to point to SRSPaginateCLI.exe
or SRSPaginateCLI.sh as appropriate. In the rest of this document, the
macro variable will be sued in place of the actual file name.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-6

All material copyright © 2006 Insight Statistical Consulting Ltd

Additional command line parameters can be used to specify more options for the
class. The commonest of these are likely to be the –log, and –out options. Full
details of all the available options are given in Section 3.6 below.

When using the paginateCLI class from within a SAS job, simply pass the required
command line as the parameter to the X command. For example:

X “&SRSPaginateCLI –in txtfile.xml –out row.xml –log mylogfile.log”;

Of course, this assumes that input.xml already exists and that output.xml will be
subsequently processed. The next few sections describe these steps in detail.

The input file that contains the text to be processed is termed the text file. The output
file that contains information about cell and row dimensions is termed the row file.
The following sections define the format of these files in more detail.

For the majority of cases, including those which require some special handling, the
%paginateCLI macro will take care of technicalities of calling the PaginateCLI java
class for you. Even in those situations where the %paginateCLI macro will not work,
there are a number of utility macros supplied with the SRS Pagination Suite that will
simplify your work. The most important of these are listed below:

%XMLFileDef Creates the filedef section of the text file.
%XMLRow Creates a row element of the text file. Assumes that variable names,

formats and column widths exist in macro arrays named vvar, fmt
and ccol, with upper limits defined by nvvars (or equivalently
nfmts and nccols, as all three arrays have the same number of
elements.)

%XMLCell Creates a cell element of the text file.
%XMLFont Creates a font element of the text file.
%XMLRowStart Defines the start of row element.
%XMLRowEnd Defines the end of a row element.

The following sections describe in detail the technical requirements of the input files
required by and the output files created by, the PaginateCLI Java class.

3.3 The SRSPaginator log

The SRPaginator log file provides information about the actions performed by the
SRSPaginator during a single run. The level of information can be controlled by the
-debug command line parameter. (See Section 3.6.4 below.) By default, the log file is
located in the same folder as the txtfile, and is named

<txtfile>_SRSPaginatorCLI_<date/time>_<user>_<host>.log

where

<inputfile> is the name of the input file, minus the file extension
<date/time> is the date and time at which the SRSPaginator began execution, in

the format yyyymmdd_hhmmss (using an obvious notation).

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-7

All material copyright © 2006 Insight Statistical Consulting Ltd

<user> is the user name associated with the process that invoked the
paginator

<host> is the host name of the computer on which the SRSPaginator was
executed

This naming convention was chosen so as to minimise the chances of file naming
collisions and to group all the log files associated with the processing of (different
versions of) the same file to be found in a logical place and in a logical order.

The default log file name may be overridden by using the –log command line
parameter. (See Section 3.6.3 below.) If the default log file name is changed, the user
assumes responsibility for avoiding name collisions.

By default, the SRSformatter echoes the contents of the log file as it is being written
to a console window. The echoed output can be suppressed by using the –noconsole
command line parameter. (See Section 3.6.6 below.) Creation of the log file can be
suppressed by using the –nolog command line parameter. (See Section 3.6.3
below4.5.7 below.) Naturally, use of the –noconsole and –nolog command line
parameters at the same time is not recommended.

When the level of debug information requested is higher than the default level of 3,
the log can get very large indeed. The information generated for each value of
-debug is summarised in Table 2 below. More detailed information is given in Table
3 at the end of this section.

Debug level Information
1 Process level: licence state, input and output files.
2 Row level information
3 Cell level information
4 Context-level information: ie changes of font or inline formatting commands

within cell
5 Word-by-word updates during the processing of each cell

Table 2: Summary of -debug settings for the SRS PaginatorCLI

In general, information about the state of the SRSPaginator, such as licencing
information and the date and time of execution, is preceded by **** NOTE:, ****
WARNING: or **** ERROR:. Information about the actions taken by the SRSPaginator
have no prefix.

The SRSPaginator log file begins with a statement about the validity of the current
SRS Pagination Suite licence:

**** NOTE: The licence file is valid.
**** NOTE: Licence written to 'D:\Program Files\Insight\SRS
Pagination Suite\SRSPaginator\SRSPaginator.lic'.
**** NOTE: Licence type: Evaluation (current usage is 42, permitted
usage is 100).

The evaluation period will expire at Wed Feb 15 10:29:59
GMT 2006 (26 days from now).

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-8

All material copyright © 2006 Insight Statistical Consulting Ltd

If the PaginatorCLI class is being used as the interface to the main Paginator class,
the SRSPaginator next records the text file it is attempting to process, together with
the names and locations of the row and log files.

Starting to parse
d:\progra~1\insight\srspag~1\srspag~1\samples\sas\txtfile.xml at
19Jan2006 10:56:18.734
Row file is
d:\progra~1\insight\srspag~1\srspag~1\samples\sas\rowfile.xml.
Log file is
d:\progra~1\insight\srspag~1\srspag~1\samples\sas\superscript_cli_SRS
Paginator1.log.

Next, the SRSPaginator reports the version of Java that it is using:

**** NOTE: Using JVM version 1.5.0_06.

If the Java version detected is not 1.4.2_xx, then the SRSPaginator writes a warning to
the log:

**** WARNING: This version of the JVM is not supported by SAS. If
you are calling the SRSPaginator using the data step JAVAOBJ
construct, results may be unreliable.

This is because the only version of Java officially supported by SAS 9 is 1.4.2.
However, this is only an issue if you are calling the Paginator class directly by using
the datastep JAVAOBJ construct. If you are calling the Paginator class indirectly, by
using the PaginatorCLI class as an interface, there is no problem.

The SRSPaginator now shows the settings detected in the filedef section of the text
file:

Paginator log stream initialised.
Starting filedef processing.

The default escape chacater is '^'.
Default value of PROTECTSPECIALCHARS is ON.
The default data font is Times New Roman 10pt.

Ending filedef processing.

At this point, the SRSPaginator is ready to start processing the actual data that will
appear in the table. It begins by announcing that it is ready to start processing the first
data row of the text file.

Starting row processing.
Start of row 1.

For each cell in the row, the SRSPaginator announces that it has detected the start of
the cell data and reports the settings that it has detected.

Cell width: 0.75in [54.0pt].
Cell padding: 3.00pt [3.0pt].
Available width: 0.67in [48.0pt].
Font: Times New Roman 10pt.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-9

All material copyright © 2006 Insight Statistical Consulting Ltd

Notice that the SRSPaginator deducts the width of the cell padding from the width
available to the cell text. By default the cell padding is set to 3pt to the left, right, top
and bottom of the text, but may be modified by the CELLPADDING style attribute. A
common cause of problems is forgetting to ensure that the cell padding value passed
to the SRSPaginator matches the value used by the SAS style used to render the
output.

On completion of processing the text contained in a cell, the SRSPaginator reports the
results of its calculations.

Display text [1, final]: '001-009' [width=0.46in].
Width: 0.75in [0.67in allowing for padding.]
Height: 17.50pt [1 lines].
Input text: 001-009
Font: 10pt Times New Roman

Both the input text and display text are reported. In straightforward cases, these two
items are identical, but where the text wraps to a new line or when the input text
contains inline formatting or other special characters, they will differ.

Here’s an example of a cell that includes a superscript:

Adding cell 1...
Cell width: 4.2cm [119.06pt].
Cell padding: 3.00pt [3.00pt].
Available width: 3.99cm [113.06pt].
Font: Times New Roman 10pt.
PROTECTSPECIALCHARS is ON.

Starting inline formatting context: ^{super.
Display text [1, font change]: 'Here is a' [width=1.23cm].

Font is now Times New Roman 6pt.
Context text: 'superscript and then' [width=1.80cm].
Display text [1, font change]: 'Here is asuperscript and then'

[width=3.03cm].
Font is now Times New Roman 10pt.
Ending inline formatting context.

Display text [1, auto split]: 'Here is asuperscript and then some '
[width=3.99cm, 'additional' is 1.41cm long].

Display text [2, final]: 'additional normal text' [width=3.14cm].
Width: 4.2cm [3.99cm allowing for padding].
Height: 29.00pt [2 lines].
Input text: Here is a^{super superscript and then} some additional

normal text
Font: 10pt Times New Roman

Ending cell processing.

And here is one from a cell that wraps on many lines:

Adding cell 1...
Cell width: 5.5cm [155.91pt].
Cell padding: 3.00pt [3.00pt].
Available width: 5.29cm [149.91pt].
Font: Times New Roman 10pt.
PROTECTSPECIALCHARS is OFF.
Display text [1, forced split]: 'This is line 1.' [width=2.05cm].
Display text [2, auto split]: 'This is a long text that wraps from

' [width=5.04cm, 'line' is 0.53cm long].

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-10

All material copyright © 2006 Insight Statistical Consulting Ltd

Display text [3, forced split]: 'line 2 to line 3.' [width=2.22cm].
Display text [4, final]: 'This is line 4.' [width=2.05cm].
Width: 5.5cm [5.29cm allowing for padding].
Height: 52.00pt [4 lines].
Input text: This is line 1.\line This is a long text that wraps

from line 2 to line 3.\line This is line 4.
Font: 10pt Times New Roman

Ending cell processing.

The SRSPaginator reports the reason for the start of a new line as forced split when
the user has used an inline formatting command or other special character to request a
new line; auto split it has itself determined that a new line is required and final when
the last text in the cell is short enough fit on a single line. In this case, as the file was
processed with protectspecialchars set to off, the RTF \line control words
appear in the input text but not in the display text.

At the end of each row, the SRSPaginator reports that it has finished with the row.

Ending row processing.
End of row 3.

Finally, when the processing of the row file is complete, the SRSPaginator reports the
date and time.

Done at 22Jan2006 18:16:33.500

Note that when using the evaluation version of the SRS Pagination Suite, the
SRSPaginator will print messages similar to the following when the limits of the
evaluation version have been exceeded.

**** NOTE: Functionality limited by evaluation licence. Returning
default value from getLineHeight.

Naturally, the results returned by the SRSPaginator may not be accurate in these
situations.

The amount of detail reported in the SRSPaginator log file is controlled by the value
of the –debug parameter of the PaginatorCLI Java class or by the setDebugLevel()
method when using the data step JAVAOBJ construct. The table below defines the
level to which the debug level should be set to obtain each piece of information.

Information Debug
level

Paginator (P),
PaginatorCLI(C) or
Both (B)

Java version in use Always B
Cell available width is negative Always B
Failure to open log file Always P
Attempt to open a null log file stream Always B
Functionality limited by evaluation licence Always B
End of row details 2 B
Incorrectly specified inline formatting context 2 B
Unsupported filedef attribute 2 C
Unsupported font style/attribute 2 C
Start of row processing 3 B

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-11

All material copyright © 2006 Insight Statistical Consulting Ltd

Information Debug
level

Paginator (P),
PaginatorCLI(C) or
Both (B)

End of context 3 B
End of row notification 3 B
Start of cell notification 3 B
Start of cell details 3 B
Start of filedef processing 3 C
Context state (need to expand what’s printed) 4 B
Forced line break 4 B
Automatic line split 4 B
Setting font for superscripting or subscripting 4 B
Start of inline formatting context 4 B
Line text at start of inline formatting context 4 B
Handled a dagger as an inline formatting context 4 B
Handled a inline style definition 4 B
Undefined inline formatting context 4 B
End of cell 4 B
End of cell details 4 B
Start of font handling 4 C

Table 3: Details of the information printed by the SRSPaginator and SRSPaginatorCLI
classes

3.4 The text file

3.4.1 The purpose of the text file

The text file is an XML file that defines the input to the PaginatorCLI class. As
such, it needs to provide information about both the text and format of the data to be
printed in a report. Whilst SAS does provide facilities to read and write XML files,
the complexity of the required structure (for example, the ability to change font and
font size mid cell is required) is such that none of the facilities built into SAS can
provide the necessary structure. This means that the text file must be constructed
manually. The SRS Pagination Suite provides several utility macros to facilitate this
task.

3.4.2 Limitations of the text file

The handling of special characters, such as RTF control words and SAS in-line
formatting directives can be specified for each individual data cell. Font faces and
sizes can be specified at the cell level, or even many times within the same cell.

3.4.3 The structure of the text file

The structure of the text file is defined by the SRSPaginator.dtd file in the SRS
Pagination Suite install folder. The SRSPaginator.dtd file contains the following
definition:

<?xml version='1.0' encoding='utf-8'?>
<!-- DTD for an SRSPaginator v1.0 TextFile -->

<!ELEMENT txtfile (filedef, row*, cell*) >
<!ELEMENT filedef (font)>
<!ATTLIST filedef version (1.0) "1.0"

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-12

All material copyright © 2006 Insight Statistical Consulting Ltd

type (RTF) "RTF"
escapechar CDATA ""
protectspecialchars (off | on | auto) "on"
cellpadding CDATA "3pt"
returnunits (pt | cm | in | twips) "pt"
delimiters CDATA " -"
tableht CDATA ""
splitchar CDATA "*">

<!ELEMENT font EMPTY>
<!ATTLIST font name CDATA #REQUIRED

size CDATA #REQUIRED
style (plain | bold | italic | italicbold) "plain" >

<!ELEMENT row (cell*) >
<!ATTLIST row rownumber CDATA #IMPLIED >
<!ELEMENT cell (font?, text)+>
<!ATTLIST cell width CDATA #REQUIRED

padding CDATA #IMPLIED
delimiters CDATA #IMPLIED
protectspecialchars (off | on |auto) "on" >

<!ELEMENT text (#PCDATA) >

Figure 1: The formal definition of the format of the SRSPaginatorCLI text file

Each <!ELEMENT> entry defines first the name of an element of the file and then the
sub-elements that comprise the main element. An asterisk indicates that the sub-
element may occur any number of times, including none at all. A plus sign indicates
that the sub-element must occur at least once. A question mark indicates a sub-
element that must occur either exactly once or not at all. **** Check this. **** So
for example, the line

<!ELEMENT txtfile (filedef, row*, cell*) >

indicates that the txtfile element (ie the whole file) consists of a filedef element
followed by an arbitrary number of row and cell elements. Similarly,

<!ELEMENT cell (font?, text)+>

indicates that a cell consists of an arbitrary number of text elements, each of which
may be preceded by an optional font element.

In its simplest form, an element called name starts with the string <name> and finishes
with the string </name>. Sandwiched between the two is the value of the element.
The text element is defined to be

<!ELEMENT text (#PCDATA) >

which is XML-speak for free text. Thus

<text>This is free text, which can include numbers such as 123 and
45.678</text>

is a valid text element.

The definition of the font element is

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-13

All material copyright © 2006 Insight Statistical Consulting Ltd

<!ELEMENT font EMPTY>

indicating that it has no value. However, it does have attributes, as indicated by its
attribute list:

<!ATTLIST font name CDATA #REQUIRED
size CDATA #REQUIRED
style (plain | bold | italic | italicbold) "plain" >

This says that the font element has three attributes: name, size and style. The name
and style attributes are free text, but the style attribute must take one of the values
plain, bold, italic or italicbold.

Attributes are specified as name/value pairs within the main element definition. Thus,

is the font element that corresponds to the data ODS style element in the default
styles.RTF style.

Note: The DTD defines that the name and font attributes of the style element
are free text, but it does nothing to ensure that the values defined for these
attributes are valid font names and font sizes, or that the defined fonts that are
available in the current operating environment . That is the responsibility of
the programmer.

Returning to the definition of a cell element, it can now be seen that

<cell width=3cm>
<text>This is the cell text</text>

</cell>

and

<cell width=2in cellpadding=2pt>
<text=This is text rendered in the default font specified in the

filedef element.</text>

<text>And this is text rendered in Arial 12pt Italic.”</text>

</cell>

are both valid cell definitions. However,

<cell width=2in cellpadding=2pt>
<text=This is text rendered in the default font specified in the

filedef element.</text>

<text>And this is text rendered in Arial 12pt Italic.”</tixt>

</cell>

is not – because the second text element is preceded by two (not one or no) font
elements and because the terminator of the second text element is </text>, not

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-14

All material copyright © 2006 Insight Statistical Consulting Ltd

</text>. When the PaginatorCLI class encounters an element that does not
conform to the definition provided by the DTD, it reports the error and stops
executing.

This level of rigour may at first sight appear onerous, but it is required to ensure that
the results returned by the SRSPaginator class are accurate and have not been
corrupted by the inadvertently invalid user input. Moreover, using the utility macros
provided as part of the SRS Pagination Suite will maximise the chance that the row
file conforms to the required format definition.

3.5 The row file
3.5.1 The purpose of the row file

The row file provides the SAS system with the results of the calculations returned by
the Paginator Java class. The definition of its contents is given by the rowfile.map
file in the SRS Pagination Suite install folder. This file can be used by the SAS 9
XML engine to read the file directly into a dataset. The code to do this is extremely
simple:

LIBNAME BaseXML XML "<rowfile>" XMLMAP="&srs_installdir.RowFile.map";

Where <rowfile> is the name of the row file to be imported. This statement creates a
dataset named BaseXML._PageData, which can be used in exactly the same way as
any other SAS dataset.

Note: There is a bug in SAS 9.1 (**** and other versions? ****) that causes
problems when a dataset accessed by the XML engine is used as the input to a
procedure. The work around is simple: just SET the XML dataset into a
conventional SAS dataset in a data step.

The variables in the BaseXML._PageData dataset are:

Variable Type Description
_Row NUM The row of the table to which this observation relates.

This should equate to _N_ in the input dataset if the
PaginatorCLI class has performed correctly. Takes
integer values from 1 to n where n is the number of
observations in the dataset.

_Cell NUM The cell (variable) within the row to which this
observation relates.

_RowHeight NUM The height of this row. Equal to max(_CellHeight)
over all observations with this value of _Row.

_RowLines NUM The height of the row in lines. Equal to
max(_CellLines) for all observations with this value of
_Row.

_RowHeightUnits CHAR The units in which _RowHeight is measured. One of
pt, in, cm, twips.

_CellLines NUM The number of lines required to render the contents of
this cell

_CellHeight NUM The height of this cell
_CellHeightUnits NUM The units in which _CellHeight is measured. One of

pt, in, cm, twips.
_Page NUM The physical page on which this observation will appear

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-15

All material copyright © 2006 Insight Statistical Consulting Ltd

**** Check this. Does _RowHeight and _RowLines correspond to the overall row
height, or simply the row height so far (left to right)?

**** Does the XML engine work correctly in SAS Version 8.x?

3.5.2 The structure of the row file

**** Is a DTD for the row file required, or does the previous section provide all the
required information.

3.6 Parameters of the SRSPaginator CLI

The following parameters are recognised by the SRSPaginator CLI. A parameter may
be specified more than once. In this situation, the last value to be specified takes
precedence. Parameters are read from left to right on the command line. CLI files
(see Section 3.6.9 below) are read from top to bottom.

3.6.1 The –in <filename> parameter

Defines the text file to be processed. The filename should include the full absolute
path to the file. The structure of the file is given in Section 3.4 above.

Default: txtfile.xml in the SRS Pagination Suite installation folder.

3.6.2 The –out <filename> parameter

Defines the row file to be created. The file should include the full absolute path to the
file. The structure of the file is given in Section 3.5 above.

Default: rowfile.xml in the SRS Pagination Suite installation folder.

3.6.3 The –log <filename>parameter

Defines the name of the log file that will contain the summary of the work carried out
by this invocation of the SRSPaginator. The default log file name is

<infilename>_SRSPaginatorCLI_yyyymmdd_hhmmss_<user>_<host>.log, where

<infilename> is the name of the file specified by the –in parameter, shorn of
its extension.

yyyymmdd_hhmmss is the date and time at which the SRSPaginator created the
file. The format should be obvious.

<user> is the user name of the process that created the log file
<host> is the name of the host on which the process that created the

log file was running.

The default log file name may be slightly cumbersome, but it does minimise the
chance of access conflicts in a multi-user environment.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-16

All material copyright © 2006 Insight Statistical Consulting Ltd

Users may override the default value at will, but in doing so they assume
responsibility for maintaining the uniqueness of the log file name. Overwriting an
existing log file will not cause the SRSPaginator fail, but it may damage any audit
trailing processes that your organisation has in place. In multi-user environments,
should two invocations of the SRSPaginator attempt to access the same log file
simultaneously, at least one invocation will fail.

3.6.4 The –debug <value> parameter

Specifies the level of processing information written to the log file. The higher the
value, the greater the detail. Valid value are integers in the range 1 to 5 inclusive.

Default: 3

For more information on the effect of the –debug parameter on the amount of
information written to the log file, see Section 3.3 above.

3.6.5 The –nolog parameter

Optional. If present, suppresses the creation of the log file.

3.6.6 The –noconsole parameter

Optional. If present, suppresses writing log file information to the console window.

3.6.7 The –licence parameter

Optional. If present, writes a summary of the current licence status at the top of the
log file.

3.6.8 The –environment parameter

Optional. If present, writes an enumeration of the Java VM system properties to the
head of the log file.

3.6.9 The –cli parameter

Specifies the name of a text file that contains additional parameter specifications. The
format of the file is one line per parameter. This includes parameters that themselves
take arguments. For example:
-in
txtfile.xml

not

-in txtfile.xml

command files can be nested by including a –cli parameter within the text file.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-17

All material copyright © 2006 Insight Statistical Consulting Ltd

3.7 Using the JAVAOBJ construct

**** To do ****

4 Using the SRSFormatter

4.1 What the SRSFormatter does

The SRSFormatter assumes that all tables created by SAS table the following generic
form:

Titles

By-table

Data table

ID section Data section

Footnotes
Figure 2: Generic table layout

The only required element of the table is the data section of the data table. All other
elements are optional. The SRSFormatter assumes that the titles and footnotes have
been created by standard SAS TITLE and FOOTNOTE statements and therefore can be
found in the header and footer sections of the input RTF file.

By default, when a table or listing flows over more than one physical page in an RTF
file, SAS abrogates all responsibility for the pagination of the output document. It
assumes that the RTF reader, typically Microsoft Word, will handle the page layout
internally. For this reason, it writes the text of any TITLE and FOOTNOTE statements
that exist to the section headers of the RTF file. This meets the functional
requirements of SAS, but creates many practical issues for end users. These include:

The fact that titles and footnotes can be physically remote from the data they
describe

The problem of overwritten running titles and footnotes when SAS outputs are
included as sub documents within a master document.

The SRSFormatter therefore takes any titles that it finds in the input file and moves
them from the header section to the top of the first subsequent table that it finds.
Similarly, it moves and footnotes to the foot of the immediately preceding table. It
can also perform a number of housekeeping tasks such as resizing the titles and
footnotes so that they occupy the same physical width as the data section of the table,
converting section breaks to simple page breaks and converting document fields (such
as the page numbers created by the ^{page} and ^{pageof} inline formatting
commands) to plain text. These last two features are particularly useful when the

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-18

All material copyright © 2006 Insight Statistical Consulting Ltd

many RTF files are to be combined into a single master document. All of these
housekeeping tasks can be turned on or off by one or more command line parameters.

In most tables, the by-table is not present, but when it is, the by-table and the data
table form a master/detail pair. SAS has no native method of creating this kind of
master/detail layout, so the SRSFormatter assumes that when a page with no footnotes
is followed by a page with no titles, then a master/detail layout is being requested.
The SRSFormatter then deletes the section or page break separating the two tables and
replaces it with a blank line. At the same time, it processes the titles and footnotes
that are present in the standard way. A more detailed explanation of the creation of
master detail tables is given in Section 5.7.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-19

All material copyright © 2006 Insight Statistical Consulting Ltd

4.2 Counting pages in Microsoft Word

RTF files created by SAS do not, by default, contain explicit page numbers, even
when the inline formatting commands thispage, lastpage or pageof are used. (The
action of each inline formatting command is described in Table 4). Instead, SAS
creates document fields which are then interpreted by the RTF reader when the file is
displayed. By doing this, SAS simplifies its own task by delegating the calculation of
the actual page numbers to the RTF reader. Unfortunately, the particular behaviour of
Microsoft Word then makes the task of the SRS pagination Suite more complicated.

In line formatting command Action in RTF destination
thispage Emits a PAGE field
lastpage Emits a NUMPAGES field
pageof Emits a PAGE field, the text “ of “ and a NUMPAGES field

Table 4: The effect of inline formatting commands associated with page numbering

This is because Word does not update the values of the page numbering fields
automatically. Word does so only

immediately prior to printing the document
when the Print Preview command is issued
when requested by the user

The first two possibilities are not available to the SRS Pagination Suite as they require
manual intervention, and we require a solution that can run in batch. The SRS
Pagination Suite can, and does, request that Word recalculates the page numbers in
the document, but the problems do not finish there.

The next problem is that when Word repaginates a document, it does so as a
background process, and there is no way of determining when the repagination has
finished. Therefore, it is impossible for the SRS Pagination Suite to know that the
values in the page numbering fields are accurate. Most of the time, this will not be a
problem as the page numbers will indeed be correct, but occasionally, especially when
processing large master-detail files, they will not be.

To allow for this situation, the SRS Pagination Suite provides three methods for
determining the number of pages in the document.

By default, the value of NUMPAGES document field is used. Aletrnatively, each
instance of the NUMPAGES field is replaced by the number of sections in the document.
(This works because SAS, by default, emits a section break (next page) every time a
page break is required.) Finally, as a last resort, the user may explicitly specify the
value to be used. This behaviour is controlled by the –pagemethod and –pagecount
command line parameters, which are described in sections 4.5.24 and 4.5.25 below.

4.3 The SRSFormatter log file

The SRSFormatter log file provides information about the actions performed by the
SRSFormatter during a single run. The level of information can be controlled by the

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-20

All material copyright © 2006 Insight Statistical Consulting Ltd

–debug command line parameter. (See Section 4.5.5 below.) By default, the log file
is located in the same folder as the input file, and is named

<input_file>_SRSFormatter_<date/time>_<user>_<host>.log

where

<inputfile> is the name of the input file, minus the file extension
<date/time> is the date and time at which the SRSFormatter began execution, in

the format yyyymmdd_hhmmss (using an obvious notation).
<user> is the user name associated with the process that invoked the

formatter
<host> is the host name of the computer on which the SRSFormatter was

executed

This naming convention was chosen so as to minimise the chances of file naming
collisions and to group all the log files associated with the processing of (different
versions of) the same file to be found in a logical place and in a logical order.

The default log file name may be overridden by using the –log command line
parameter. (See Section 4.5.3 below.) If the default log file name is changed, the user
assumes responsibility for avoiding name collisions.

By default, the SRSformatter echoes the contents of the log file as it is being written
to a console window. The echoed output can be suppressed by using the –noconsole
command line parameter. (See Section 4.5.6 below.) Creation of the log file can be
suppressed by using the –nolog command line parameter. (See Section 4.5.7 below.)
Naturally, use of the –noconsole and –nolog command line parameters at the same
time is not recommended.

In general, information about the state of the SRSFormatter, such as licencing
information, the version of Microsoft Word being used and the date and time of
execution, is preceded by **** NOTE:, **** WARNING: or **** ERROR:.
Information about the actions taken by the SRSFormatter have no prefix.

An SRSFormatter log file begins with three notes that provide information about the
state of the SRS Pagination Suite licence and the versions of the SRSFormatter and
Microsoft Word being used.

**** NOTE: Licence: Timed [licence expires at 03Jan2007 09:26:07.07
(274 days from now)].
**** NOTE: Created by SRSFormat version version 1.0 [build 1]. Date
04/04/2006 07:58:35.
**** NOTE: Using Word Version 9.0 [Word 2000].

The SRSFormatter reports the start of each new document section as the input file is
formatted:

Processing section 1...

If a master-detail relationship is detected (see Section 4.1 above), this is reported:

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-21

All material copyright © 2006 Insight Statistical Consulting Ltd

Sections 1 and 2 form a master/detail pair.

Once titles and footnotes in all sections in the document have been processed, the
SRSFormatter begins to reformat the entire document, reporting each stage as it does
so:

Performing whole document formatting...
Converting fields to conventional text.
Converting section breaks to standard page breaks.
Creating document format flag.

Next, the SRSFormatter saves the output file(s) in the formats requested:

Saving output file(s)...
Saving document as f:\test1.rtf.

Finally, the SRSFormatter reports the date and time at which processing finished, and
the time taken to processed the input file:

**** NOTE: Finished at 04Apr2006 08:00:45.45. Elapsed time:
00:02:10.

The –debug command line parameter controls the level of detail written to the log file
as follows:

Value of debug Information provided
1 Reserved for future use
2 Note detection of master-detail tables

Note stages of whole document formatting
Note creation of document format flag
Note names of output file(s)

3 Record start of processing for each section
Note conversion of section breaks to standard page breaks
Note conversion of section breaks to standard page breaks

4 Program option settings, including those left at their default values
Report details of field text substitution

Table 5: Values of the SRSFormatter -debug command line parameter

The default value of –debug is 3. Notes, warnings and errors are always written to the
log file. The value of –debug has no effect on the information provided by the
-fulltimer command line option. (See Section 4.5.15.)

4.4 Using the SRSFormatter to alter a table’s appearance

Although not necessary for its main task of moving TITLEs and FOOTNOTEs so that
they form part of the table to which they relate, the SRSFormatter can also perform
some additional formatting tasks.

The first of these, which is enabled by default, is that the rows containing FOOTNOTEs
can be resized so that they are the same width as the table to which they are attached.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-22

All material copyright © 2006 Insight Statistical Consulting Ltd

(By default their width is equal to distance between the left and right page margins as
defined by the the SAS OPTIONS statement.)

This behaviour can be turned off by using the –nofwidth command line parameter.

More usefully, the SRSFormatter provides a basic mechanism for adding vertical
separators between some columns of the table. (Prior to SAS 9.1.x, no cell specific
border styling was possible. In SAS 9.1.x, directional border formatting is possible –
for example, all right borders can look different to all top borders - but it is still not
possible to directly create separators between some columns and not between others.
The SRSFormatter gives you the option to do this in some circumstances.

For example, suppose in a table that summarises the severity of adverse events
experienced in a clinical trial, you want vertical separators to appear between
treatment groups, but not between the severity categories within a subgroup. This can
be achieved using the –sepcols, -bsepcols or –hsepcols command line parameters.
See Example **** for more details.

The –bsepcols command line parameter affects the body of the table, whereas
-hsepcols affects the header of the table. –sepcols acts as if both –bsepcols and
-hsepcols are specified.

The major limitation of this mechanism arises in tables with multi-line headers that
also containing spannign headers. In these situations, the index of the same column
will be different in different rows of the header. Because –hsepcols does not allow
row specific indexing, this may lead to undesirable side-effects.

4.5 Command line options

Parameter names are case insensitive, so and capitalisation or other formatting is
purely to enhance readability.

Only the -in parameter is mandatory. All others are optional, so in its simplest form,
the SRSFormatter is extremely easy to use, whilst retaining the flexibility necessary
for real life operation.

4.5.1 -in <filename>

Required. The full path name of the RTF file to be formatted. If the path includes
white space, enclose it in double quotes.

4.5.2 -out <filename>

Optional. The full path name of file to which the formatted file is to be saved. If the
path includes white space, enclose it in double quotes.

If the -out option is omitted, the input file is overwritten.

If the extension of the -out file is .doc, then the output file is saved as a Word
document and the doc parameter need not be specified. If the extension of the -out

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-23

All material copyright © 2006 Insight Statistical Consulting Ltd

file is not .doc and the doc parameter is present, then the output file is saved as both
the -out file (in the appropriate format) and as a Word Document. In this case, the
Word document has the same path and name as the -out file, but the extension is
changed to .doc.

4.5.3 -log <filename>

Optional. The name of the file to which the log for this execution of the
SASFormatter will be saved. See Section 4.3 above for more information.

See also: -nolog, -noconsole, -debug.

4.5.4 -NoLockFields

Optional. If present, fields in the RTF file are not converted to normal text.

4.5.5 -Debug <x>

Optional. Default 2. x can take the values 1, 2, 3, 4 or 5. Specifies the level of debug
information written to the log file and console window. If –debug 1 the information
written is minimal. If –debug 4 or –debug 5, copious amounts of information are
written. Generally, this level of detail is necessary only for debugging a program that
is not functioning as expected. Values of -debug 2 or –debug 3 are sufficient to
check the correct execution of the program in most circumstances.

Details of exactly what is written the log file for each value of debug, and how to
interpret the log, can be found in Section 4.3 above.

See also: -notimer, -fulltimer.

4.5.6 -Noconsole

Optional. If present, prevents log information being written to the console window in
which SASFormat is executing.

See also: -nolog.

4.5.7 -Nolog

Optional. If present, prevents log information being written to the log file.

See also: -noconsole.

4.5.8 -NoConvertSectionBreaks

Optional. If present, prevents the conversion of section breaks in the RTF file to
standard page breaks.

4.5.9 -NoFWidth

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-24

All material copyright © 2006 Insight Statistical Consulting Ltd

Optional . If present, prevents the reformatting of the footnotes table so that its width
matches that of the body table.

4.5.10 -NoTimer

Optional. If present, prevents simple “time started” and “time finished” information
from being written to the log file and console window.

See also: -fulltimer

4.5.11 -Reformat

Optional. SRSFormat writes an invisible flag to the RTF file once reformatting is
complete. By default, SRSFormat will not format for a second time a file that has
already been formatted once. However, if the -reformat parameter is specified, then
the file may be reformatted again.

See also: -noflag.

4.5.12 -NoFlag

Optional. If present, prevents the “formatting done” flag from being written to the
RTF file.

See also: -reformat.

4.5.13 -doc

Optional. If present, saves the input RTF file in Word document format as well as the
format implied by the extension of the -out file. Not required if the extension of the
-out file is .doc

For example,

SRSFormat –in F:\test.rtf –doc

Processes F:\test.rtf and saves it as both F:\test.rtf and F:\test.doc.

See also: -rtf, -out, -in.

4.5.14 -rtf

Optional . If present, saves the input RTF file in RTF as well as the format implied by
the extension of the -out file. Not required if the extension of the -out file is .rtf.

See also: -doc, -out, -in.

4.5.15 -FullTimer

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-25

All material copyright © 2006 Insight Statistical Consulting Ltd

Optional. If presents writes detailed timing information on the various stages of
reformatting to the log file and console window. See **** for more details.

See also: -log, -noconsole, -nolog, -debug, -notimer.

4.5.16 -FileConverter <name>

Optional. Not yet fully implemented. If present, allows saving of the -out file in a
format other than RTF or Word document. The value of name must be one of the file
converters present in the local installation of Microsoft Word. See **** for details.

4.5.17 -Visible

Optional. If present, Microsoft Word runs in a visible window whilst reformatting the
RTF file.

4.5.18 -BSepCols (<comma-separated-list>)

Optional. If present, indicates which columns in the table body are to have visible
right margins. See **** for details.

See also: -HSepCols, -SepCols.

4.5.19 -HSepCols (<comma-separated-list>)

Optional. If present, indicates which columns in the table header are to have visible
right margins. See **** for details.

See also: -BSepCols, -SepCols.

4.5.20 -SepCols (<comma-separated-list>)

Optional. If present, acts as if both -BSepCols and -HSepCols have been specified
with the same value list. See **** for details.

See also: -BSepCols, -HSepCols.

4.5.21 -cli <filename>

Optional. If present, specifies that the file defined by <filename> contains additional
command line parameters. <filename> should be an ASCII file with one command
or option per line. Lines should be terminated by the default end of line sequence for
the operating system on which the SRS pagination Suite is installed. –cli command
line parameters can be nested within cli files.

Note that the format requires options to parameters to appear on the line(s) following
the actual parameter. Thus,

-in myinfile.xml

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-26

All material copyright © 2006 Insight Statistical Consulting Ltd

Is incorrect. The correct syntax is

-in
myinfile.xml

4.5.22 -printer

Optional. Allows printing of the input file to a file using any of the printers installed
on the local system. The extension of the output file is given by the value of the
-printertype command line parameter. For example, the following run of
SRSFormat creates a PDF file using the PDF Create utility by the ScanSoft
Corporation (www.nuance.com). The name of the output file is F:\test.pdf.

SRSFormat –in F:\test.rtf –printername “ScanSoft PDF Create!”

4.5.23 -printertype

Optional. Default: pdf. Specifies the extension of the output file created by the
-printer command line parameter.

4.5.24 -pagemethod <value>

Optional. Default 1. Defines the method used to determine the number of pages in
the formatted document. Permitted values are:

Value Description
1 Use the current value of the individual NUMPAGES field
2 Use the number of sections in the document
3 Use the value supplied by the user in the –pagecount command line

parameter.

See Section 4.2 above for more details.

See also: -pagecount.

4.5.25 -pagecount <value>

Optional. Sets –pagemethod to 3 and uses <value> to replace any instance of the
NUMPAGES field found in the document.

See Section 4.2 above for more details.

See also: -pagemethod.

5 Examples

The code for all these examples can be found in the /samples/sas folder under the
SRS Pagination Suite install folder. Datasets without a libref specified can similarly
be found in the /samples/data folder. Datasets, formats and template catalogs were
created using SAS 9 running on Microsoft Windows XP. Users of other versions of
SAS or running on other platforms may need to recreate the input files. A transport

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-27

All material copyright © 2006 Insight Statistical Consulting Ltd

file is provided for this purpose, and the code to do so is supplied in
import_transport_files.sas. Similarly, the code to create the necessary formats
and styles can be found in define_formats.sas and define_styles.sas
respectively.

The libnames required to access the data, together with the other statements necessary
to create the SRS Pagination Suite environment are all contained in autoexec.sas.
The statements are all straightforward. autoexec.sas should be run before any of
the code in the example files. By default, this will happen automatically if the
examples are run in batch using the windows explorer, but autoexec.sas will have to
be included manually if the examples are run interactively.

**** What’s the situation on Unix?

The first two examples both produce essentially the same output. The differences
between them lie in the way the file is produced. Example 5.1 shows the way in
which the output would normally be produced, by calling the %paginateCLI macro.
This produces the shortest source code and hides all of the complexity of the process
from the user. Example 5.2 shows how the same file can be produce d without
recourse to any of the supplied macros. Although the code in example 5.2 is more
complex than is necessary for this particular example, it demonstrates the techniques
that need to be used in situations for which the standard %paginateCLI macro is
inappropriate.

5.1 A simple listing using the %paginateCLI macro

Source file: violations_listing_cli_macro.sas
Output file: violations_listing_cli_macro.rtf
SAS log file: violations_listing_cli_macro.log
SRS Paginator log file: violations_listing_cli_macro_SRSPaginator.log
SRS Formatter log file: violations_listing_cli_macro_SRSFormatter.log

The Violations dataset contains details of the protocol deviations noted in a clinical
study. This information is to be listed. The variables containing the details of the
deviation and the investigators comment are DevDet and Comment respectively. These
two variables will define the amount of space required by each row of the table: the
text produced by the other variables in the dataset is trivially short. The observations
are to be sorted by treatment (Drggroup) and subject number (PID).

Sort the data into the required order. Although the REPORT procedure doesn’t require
its input dataset to be sorted by the ORDER variables, the SRSPaginator class does
require sorted data: the SRSPaginator class has no knowledge of SAS formats and
so cannot work out what the correct order of unsorted data would be:

PROC SORT DATA=DATA.Violations OUT=Violations;
BY Drggroup PID;

RUN;

Next, call the %paginateCLI macro. &indata specifies the input dataset, &outdir
specifies the folder in which the text file, row file and log file will be created.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-28

All material copyright © 2006 Insight Statistical Consulting Ltd

&varlist defines the variables that will appear in the report, and the order in which
they do so. &colwidths defines the widths of the columns in the table. There should
be a one-to-one correspondence between the elements of &varlist and those of
&colwidths. Column widths can be specified in inches (in), centimeters (cm), points
(pt) or twips (twips).

%paginateCLI(indata=Violations,
outdir=&srs_sasdir,
varlist= Drggroup PID Visit DevDet Comment Major,
colwidths=1.25in 0.75in 1.25in 2in 1.75in 0.5in)

That’s the only additional preparatory code required to paginate the dataset. The
report can now be compiled using standard REPORT procedure statements.

ODS ESCAPECHAR="^";
OPTIONS ORIENTATION=LANDSCAPE PAPERSIZE=ISO_A4;
ODS LISTING CLOSE;
ODS RTF FILE="violations_listing_cli_macro.rtf"
STYLE=styles.LandscapeA4;
PROC REPORT DATA=Violations MISSING;

COLUMNS _Page Drggroup PID Visit DevDet Comment Major
("Height" _RowLines _RowHeight);

DEFINE _Page/ORDER ORDER=INTERNAL NOPRINT;
DEFINE Drggroup/ORDER ORDER=INTERNAL LEFT STYLE=[CELLWIDTH=3cm];
DEFINE PID/ORDER ORDER=INTERNAL STYLE=[CELLWIDTH=1.5cm];
DEFINE Visit/DISPLAY STYLE=[CELLWIDTH=3cm];
DEFINE DevDet/DISPLAY STYLE=[CELLWIDTH=5cm];
DEFINE Comment/DISPLAY STYLE=[CELLWIDTH=4cm];
DEFINE Major/DISPLAY STYLE=[CELLWIDTH=1.5cm];
DEFINE _RowLines/DISPLAY "Lines" STYLE=[CELLWIDTH=1.5cm];
DEFINE _RowHeight/DISPLAY "Points" FORMAT=F5.1

STYLE=[CELLWIDTH=1.5cm];
BREAK AFTER _Page/PAGE;
TITLE1 "Listing of Violations";
FOOTNOTE1 J=R "Page ^{pageof}";
FOOTNOTE2 J=L ITALIC

"Output: violations_listing_cli_macro.rtf (&sysdate9 &systime)";
RUN;
ODS RTF CLOSE;

The code that is specific to the operation of the SRS Paginator is indicated by Italics.
The remainder of the code is absolutely standard REPORT procedure code. The code
specific to the SRS Paginator will now be explained in more detail.

The _Page variable is a variable created by the %paginateCLI macro that indicates
the physical page on which the observation will appear. We need to force page breaks
within the report. We do this with BREAK AFTER statement

BREAK AFTER _Page/PAGE;

In order for the BREAK AFTER statement to work, the _Page variable must be defined
as a GROUP or ORDER variable. Since we don’t want any summary statistics to be
produced by _Page, we choose to define it as an ORDER variable. Since we don’t want
the _Page variable to be printed in the report, we specify the NOPRINT option in the
variable’s definition.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-29

All material copyright © 2006 Insight Statistical Consulting Ltd

DEFINE _Page/ORDER ORDER=INTERNAL NOPRINT;

And finally, the _Page variable must be included as the first variable in the report’s
columns definition:

COLUMNS _Page Drggroup ...

Optionally, the SRSFormatter can be called to reposition the reports titles and
footnotes:

X “&srsformat –in &srs_sasdir.violations_listing_cli_macro.rtf”;

5.2 The same listing built from scratch

Source file: violations_listing_cli.sas
Output file: violations_listing_cli.rtf
SAS log file: violations_listing_cli.log
SRS Paginator log file: violations_listing_cli_SRSPaginator.log
SRS Formatter log file: violations_listing_cli_SRSFormatter.log

Finally, this section shows how to build the txtfile without recourse to any macro.

As before, the initial sort remains the same as in Example 5.1 above. The txtfile is
constructed in a DATA _NULL_ step. _X is a temporary variable used to store the
formatted values of any numeric variables that will appear in the table. The txtfile is a
simple ASCII file.

DATA _NULL_;
LENGTH _X $ 120;
FILE "txtfile.xml" LRECL=32767;

Read the observations in the Violations dataset. The only special requirement is the
need to know when the end of the dataset has been reached.

SET Violations (KEEP=Drggroup PID Visit DevDet Comment Major) END=E;

The first section of the txtfile, as with any XML file, is the filedef section. The format
of this section is rigid and the following skeleton code should be used in all cases:

/* filedef element */
IF _N_ EQ 1 THEN DO;

PUT "<?xml version='1.0' encoding='utf-8'?>";
PUT "<!DOCTYPE txtfile SYSTEM ""..\..\SRSPaginator.dtd"">";
PUT "<txtfile>";
PUT " <filedef version=""1.0""";
PUT " type=""RTF""";
PUT " escapechar=""""";
PUT " protectspecialchars=""on""";
PUT " cellpadding=""3pt""";
PUT " returnunits=""pt""";
PUT " delimiters="" -""";
PUT " splitchar=""*""";
PUT " tableht=""7cm""";

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-30

All material copyright © 2006 Insight Statistical Consulting Ltd

PUT " >";
PUT " <font name=""Arial"" size=""9pt""

style=""plain"">";
PUT " </filedef>";

END;

The <filedef> element supplies the default values of various parameters used by the
SRSPaginator when paginating a table. It appears only once in the txtfile, and must
appear at the head of the file. The default values it defines are valid only for the
current invokation of the SRSpaginator, and can be varied within the constraints
defined by the DTD shown in Section 3.4.3 above. The version and type
parameters should not be altered in any circumstances.

The location of the DTD should be specified relative to the folder in which the txtfile
is located.

The start of a new row of data is identified by the <row> element:

PUT " <row rownumber=""" _N_ +(-1) """>";

Within a row, the start of a new cell is identified by a <cell> element, for example:

PUT " <cell width=""1.25in"" padding=""3pt"" delimiters=""- "">";

The cell text is defined by the <text> element, for example:

PUT " <text>" _X +(-1) "</text>";

The end of a cell definition is marked by the </cell> element, so the code necessary
to provide the SRSFormatter with the information necessary to calculate the space
needed to display the Drggroup variable is thus:

_X = PUT(Drggroup, DrgLbl.);
PUT " <cell width=""1.25in"" padding=""3pt"" delimiters=""- "">";
PUT " <text>" _X +(-1) "</text>";
PUT " </cell>";

In this case, the data value is displayed using the default font specified in the
<filedef> element shown above. If a different font was required, this could be
achieved by including a element immediately before the <text> element, for
example:

PUT "<cell width=""1.25in"" padding=""3pt"" delimiters=""- "">";
PUT " <font name=""Courier New"" size=""10pt""

style=""plain"">";
PUT " <text>This text will be displayed in Courier New 10pt</text>";
PUT "</cell>";

If a font must change within a cell, this can be accommodated by including an
arbitrary number of /<text> element pairs. For example:

PUT "<cell width=""1.25in"" padding=""3pt"" delimiters=""- "">";
PUT " <font name=""Courier New"" size=""10pt""

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-31

All material copyright © 2006 Insight Statistical Consulting Ltd

style=""plain"">";
PUT " <text>This text will be displayed in Courier New 10pt</text>";
PUT " <font name=""Times New Roman"" size=""12pt""

style=""plain"">";
PUT " <text>and this in Times New Roman 12pt</text>";
PUT "</cell>";

After the cells for all the necessary variables have been defined ina similar manner,
the row definition is ended by a </row> element.

PUT " </row>";

Once all the observations have been written to the txtfile, the txtfile must be
terminated neatly:

IF E THEN DO;
PUT "</txtfile>";
CALL SYMPUT("_N1", COMPRESS(PUT(_N_, BEST.)));

END;

And finally, the data step is terminated with a run; statement.

RUN;

The subsequent call to the %paginateCLI macro and the remainder of the program is
identical to that shown in Example 5.1 above.

5.3 Forcing line breaks

Source file: forced_line_breaks.sas
Output file: forced_line_breaks.rtf
SAS log file: forced_line_breaks.log
SRS Paginator log file: forced_line_breaks_SRSPaginator.log
SRS Formatter log file: Not applicable.

As explained in section 3.1.1, forced line breaks are correctly handled by the
Paginator class when the ODS PROTECTSPECIALCHARS style attribute is set to OFF.
This example demonstrates how to set the Paginator class up to do this.

Note to beta testers. I will rewrite this example once the
PROTECTSPECIALCHARS option can be set at the cell level.

Create some test data.

DATA Test;
LENGTH Text $ 200;
Text = "This is line 1. \line This is line 2. \line This is line

3.";
OUTPUT;
Text = "This is line 1. \line This is a long text that wraps from

line 2 to line 3. \line This is line 4.";
OUTPUT;
Text = "This is a wrapped text \par that uses the \\par control

word \par rather than the \\line control word.";
OUTPUT;

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-32

All material copyright © 2006 Insight Statistical Consulting Ltd

RUN;

Call the %paginateCLI macro. Note the use of the defaultprotectspecialchars
parameter.

%paginateCLI(indata=Test,
outdir=&srs_sasdir,
varlist= Text,
colwidths=6cm,
defaultprotectspecialchars=off)

Create the output file.

ODS RTF FILE="&srs_sasdir.forced_line_breaks.rtf";
PROC REPORT DATA=Test;

COLUMNS Text _RowLines _RowHeight;
DEFINE Text/DISPLAY STYLE=[PROTECTSPECIALCHARS=OFF CELLWIDTH=6cm];
DEFINE _RowLines/DISPLAY "Number of lines";
DEFINE _RowHeight/DISPLAY FORMAT=F5.1 "Row height (points)";
TITLE "Demonstration of the handling of forced line breaks by the

SRS Pagination Suite";
RUN;
ODS RTF CLOSE;

The detection and handling of the forced line breaks is illustrated by this extract from
the Paginator log file:

Adding cell 1...
Cell width: 5.5cm [155.90551181102362pt].
Cell padding: 3.00pt [3.0pt].
Available width: 5.29cm [149.90551181102362pt].
Font: Times New Roman 10pt.
Display text [1, forced split]: 'This is line 1. ' [width=2.15cm].
Display text [2, auto split]: 'This is a long text that wraps from

' [width=5.04cm, 'line' is 0.53cm long].
Display text [3, forced split]: 'line 2 to line 3. '

[width=2.33cm].
Display text [4, final]: 'This is line 4.' [width=2.05cm].
Width: 5.5cm [5.29cm allowing for padding.]
Height: 52.00pt [4 lines].
Input text: This is line 1. \line This is a long text that wraps

from line 2 to line 3. \line This is line 4.
Font: 10pt Times New Roman

Ending cell processing.

Note that the RTF control word \line appears in the input text but not in the display
text.

The output file includes an example of how the effects of using the \line and \par
RTF control words can differ. Here is a section of the output file:

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-33

All material copyright © 2006 Insight Statistical Consulting Ltd

Text
Number
of lines

Row
height

(points)

This is line 1.
This is line 2.
This is line 3.

3 40.5

This is line 1.
This is a long text that wraps from
line 2 to line 3.
This is line 4.

4 52.0

This is a wrapped text
that uses the \par control word
rather than the \line control word.

3 40.5

Figure 3: An illustration of the different effects of the \line and \par RTF control words

Notice the difference between lines 1 and 3 of the table. Both occupy three lines, and
the Paginator class reports this fact correctly. But the physical height of row 3 is
clearly greater than that of row 1, even though the Paginator class reports the same
height for the two rows. The reason for the discrepancy becomes apparent when the
paragraph properties for row 3 are examined. Figure 4 below shows the Microsoft
Word 2000 paragraph properties dialog.

Figure 4: The Microsoft Word paragraph properties dialog for row 3

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-34

All material copyright © 2006 Insight Statistical Consulting Ltd

This clearly shows that the Normal template on this installation adds a spacing of
three points above and below each paragraph. As the Paginator class has no way of
knowing what additional styling an individual RTF reader will apply to a document, it
cannot take this into account when calculating cell heights. The problem does not
exist when the \line control word is used to force a line break as no additional
formatting is associated with a simple line break.

5.4 Superscripts and other special characters

Source file: superscript_cli.sas
Output file: superscript_cli1.rtf

superscript_cli2.rtf
SAS log file: superscript_cli.log
SRS Paginator log file: superscript_cli_SRSPaginator1.log

superscript_cli_SRSPaginator2.log
SRS Formatter log file: Not applicable.

As a simple demonstration of the handling of superscripts and superscripts, consider
the following data step.

DATA Temp;
LENGTH X $ 100 Y $ 100 Z $ 100;
X = "Here is a^{super superscript and then} some additional normal

text";
Y = "Here is a{\super superscript and then} some additional normal

text";
Z = Y;

RUN;

The intention is clearly that the values of X, Y and Z should all be displayed as

Here is asuperscript and then some additional normal text

However, the appearance of the value of X will depend on the value of the ODS
ESCAPECHAR character and that of Y and Z on the value of the PROTECTSPECILCHARS
attribute of the cell in which the value is displayed.

Here is a call to PROC REPORT that will illustrate these facts:

ODS ESCAPECHAR="^";
PROC REPORT DATA=Temp NOFS SPLIT="*";

COLUMN X Y Z;
DEFINE X/DISPLAY STYLE=[CELLWIDTH=4.2cm];
DEFINE Y/DISPLAY STYLE=[CELLWIDTH=4.2cm];
DEFINE Z/DISPLAY STYLE=[CELLWIDTH=4.2cm PROTECTSPECIALCHARS=OFF];
TITLE "Handling a superscript in a column that requires wrapping";

RUN;
ODS RTF CLOSE;

The width of the columns has been specifically chosen so that the number of lines
required for each will be different, whilst requiring both to wrap.

The call to the %paginateCLI macro that handles this situation correctly is

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-35

All material copyright © 2006 Insight Statistical Consulting Ltd

%paginateCLI(indata=Temp,
outdir=&srs_sasdir,
varlist= X Y Z,
protectspecialchars=on on off,
colwidths= 4.2cm 4.2cm 4.2cm,
escapechar=%str(^),

logfile=%str(&srs_sasdir.superscript_cli_SRSPaginator1.log),
keepcelldata=TRUE)

Note the use of the escapechar and keepcelldata parameters. The value of the
escapechar parameter must match that defined by the ODS ESCAPECHAR statement.
keepcelldata is used to add the cell specific size data to the output dataset. In this
case, this extra information is not strictly necessary, but it is kept for illustrative
purposes. To display it, the original PROC REPORT code is modified as follows:

ODS ESCAPECHAR="^";
ODS RTF FILE="superscript_cli1.rtf";
PROC REPORT DATA=Temp NOFS SPLIT="*";

COLUMN X Y Z _CellLines1 _CellLines2 _CellLines3 _RowHeight
_RowLines;

DEFINE X/DISPLAY STYLE=[CELLWIDTH=4.2cm];
DEFINE Y/DISPLAY STYLE=[CELLWIDTH=4.2cm];
DEFINE Z/DISPLAY STYLE=[CELLWIDTH=4.2cm PROTECTSPECIALCHARS=OFF];
DEFINE _CellLines1/DISPLAY "Lines required by column X";
DEFINE _CellLines2/DISPLAY "Lines required by column Y";
DEFINE _CellLines3/DISPLAY "Lines required by column Z";
DEFINE _RowHeight/DISPLAY "Row height*(pt)" FORMAT=F4.1;
DEFINE _RowLines/DISPLAY "Row lines";
TITLE "Handling a superscript in a column that requires wrapping";

RUN;

This produces superscript_cli1.rtf, which shows that X and Y are displayed as
expected. The text that was intended to be RTF control text in the variable Y is
interpreted as simple text because the PROTECTSPECIALCHARS style attribute has been
left at its default value of ON for this column. Consequently, the cell text is displayed
over three lines rather than two. This fact has been correctly identified by the
SRSPaginator, as in demoinstrated by the right hand columns in the table.

For completeness, paginator_cli.sas creates a second table that displays the same
data. In this table, the cell widths are 7.5cm. In this case, Y should just fit on one line,
but Z still requires two lines. This is indeed what we see, and what the SRSPaginator
predicts:

Y Z

Here is asuperscript and then some additional normal text Here is a superscript and then some additional
normal text

The additional cell data is also correct, but has been omitted from the illustration for
purely cosmetic purposes. The full table cane be seen in superscript_cli2.rtf.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-36

All material copyright © 2006 Insight Statistical Consulting Ltd

Note that the ODS allows the PROTECTSPECIALCHARS style attribute to be set on a
cell-by-cell basis, whereas the ESCAPECHAR can be set only globally.

5.5 Inline formatting

Source file: inline_formatting.sas
Output file: inline_formatting.rtf
SAS log file: inline_formatting.log
SRS Paginator log file: inline_formatting_SRSPaginator.log
SRS Formatter log file: Not applicable.

As a simple demonstration of the handling of inline formatting, consider the following
data step.

DATA Test;
LENGTH X $ 200 Y $ 200;
X = "This is Times New Roman and this is Arial 12pt bold and this

is back to Times New Roman.";
Y = "This is Times New Roman and ^S={FONT_FACE = Arial FONT_SIZE =

12pt FONT_WEIGHT=BOLD}this is Arial 12pt bold ^S={}and this is back
to Times New Roman.";
RUN;

The visible text produced by printing variable X and Y will be the same. However, Y
contains some ODS inline formatting commands that will alter the font used to
display the text, and hence the space required to render it. The SRSPaginator should
reflect this correctly.

Call the SRSPaginator. As the differences between the dimensions of individual cells
are of interest, specify keepcelldata=TRUE.

%paginateCLI(indata=Test,
outdir=&srs_sasdir,
varlist= X Y,
colwidths=4.25cm 4.25cm,
escapechar=%str(^),
keepcelldata=TRUE)

Close the listing destination and open the RTF destination.

ODS ESCAPECHAR="^";
ODS LISTING CLOSE;
ODS RTF FILE="&srs_sasdir.inline_formatting.rtf";

Create the output using the REPORT procedure.

PROC REPORT DATA=Test;
COLUMN X Y ("Cell 1" _CellLines1 _CellHeight1)

("Cell 2" _CellLines2 _CellHeight2)
("Row" _RowHeight _RowLines);

DEFINE X/DISPLAY STYLE=[CELLWIDTH=4.25cm];
DEFINE Y/DISPLAY STYLE=[CELLWIDTH=4.25cm];
DEFINE _CellLines1/DISPLAY "Lines";
DEFINE _CellLines2/DISPLAY "Lines";
DEFINE _RowLines/DISPLAY "Lines";

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-37

All material copyright © 2006 Insight Statistical Consulting Ltd

DEFINE _CellHeight1/DISPLAY "Height (pt)" FORMAT=F5.1;
DEFINE _CellHeight2/DISPLAY "Height (pt)" FORMAT=F5.1;
DEFINE _RowHeight/DISPLAY "Height (pt)" FORMAT=F5.1;
TITLE1 "SRS Paginator correctly calculates text length when inline

formatting commands are present";
RUN;

Finally, close the RTF destination.

This code creates the following table in the RTF file.

Cell 1 Cell 2 Row

X Y Lines
Height

(pt) Lines
Height

(pt)
Height

(pt) Lines

This is Times New Roman
and this is Arial 12pt bold
and this is back to Times
New Roman.

This is Times New Roman
and this is Arial 12pt
bold and this is back to
Times New Roman.

4 52.0 4 54.3 54.3 4

Although the texts in both cells require four lines to be printed, the fact that some of
the text in the Y cell is rendered in Arial 12 pt bold means that the physical space
required for this cell is greater than that required by the X cell. The results of the call
to the SRSPaginator reflect this: the height of the X cell is 52pt and the height of the Y
cell is 53.1pt. The overall row height also correct.

Also, the SRSPaginator calculates the position of the line breaks correctly. Here is an
extract from the SRSPaginator log file corresponding to the X cell:

**** NOTE: Starting text processing.
Display text [1, auto split]: 'This is Times New Roman '

[width=4.02cm, 'and' is 0.49cm long].
Display text [2, auto split]: 'and this is Arial 12pt bold '

[width=3.88cm, 'and' is 0.49cm long].
Display text [3, auto split]: 'and this is back to Times '

[width=3.74cm, 'New' is 0.63cm long].
**** NOTE: Ending text processing.

And the corresponding section corresponding to the Y cell:

**** NOTE: Starting text processing.
Display text [1, auto split]: 'This is Times New Roman '

[width=4.02cm, 'and' is 0.49cm long].
Display text [2, font change]: 'and ' [width=0.60cm].
Inline style specification detected.

Font is now Arial bold 12pt.
Display text [2, auto split]: 'and this is Arial 12pt '

[width=3.92cm, 'bold' is 0.63cm long].
Display text [3, font change]: 'bold ' [width=0.95cm].
Inline style specification detected.

Empty inline style definition. Resetting to default context.
Font is now Times New Roman 10pt.

Display text [3, auto split]: 'and this is back to Times '
[width=3.74cm, 'New' is 0.63cm long].
**** NOTE: Ending text processing.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-38

All material copyright © 2006 Insight Statistical Consulting Ltd

Notice that the location of the second line break is correctly predicted in both cases.

5.6 A table that requires custom pagination

Source file: special_processing.sas
Output file: special_processing.rtf
SAS log file: special_processing.log
SRS Paginator log file: specal_processing_SRSPaginator.log
SRS Formatter log file: Not applicable.

The SASHELP.Shoes dataset contains sales data from a fictitious chain of shoe shops.
In this example, we build a simple summary of sales figures based on a slightly
modified version of this dataset. The report should show total sales for each category
of merchandise within each region. The region names should appear as spanning
headers within the body of the table and should include details of the countries within
the region. In addition, the information for an individual region should not span two
pages. You can see the final table in the special_processing.rtf file.

The only minor problem here is working out how many rows are required to print the
first observation in each region. (For simplicity, we assume that the table cells are
sufficiently wide to allow the sales data to be rendered in a single line. If this were
not the case, or if a region were permitted to span across pages, the modification to
the code would be straightforward.)

First, create a format the maps the region name to its constituent countries:

PROC FORMAT;
VALUE $RegFmt (MAX=120)
“Africa"="Africa: Algeria, Angola, Egypt, Ethiopia, Kenya, South

Africa, Sudan and Uganda"
"Asia"="Asia: Japan, South Korea and Thailand"
"North America"="North America: Canada and The United States"
"Central America/Caribbean"="Central America/Caribbean: Jamaica,

Mexico, Nicaragua and Puerto Rico"
"Eastern Europe"="Eastern Europe: Czech Repiblic, Hungary, Poland

and Russia"
"Middle East"="Middle East: Dubai, Israel and Saudi Arabia"
"Pacific"= "Pacific: Australia, Indonesia, Malaysia, New Zealand,

Singapore and The Philippines"
"South America"="South America: Argentina, Bolivia, Brazil, Chile,

Colombia, Uruguay and Venezuaela"
"Western Europe"="Western Europe: Denmark, France, Germany, Great

Britain, Italy, Portugal, Spain and Switzerland";
RUN;

And modify the regions in the original dataset slightly

DATA Shoes;
SET SASHELP.Shoes;
IF Region IN ("United States", "Canada") THEN Region = "North

America";
RUN;

Create the summary dataset

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-39

All material copyright © 2006 Insight Statistical Consulting Ltd

PROC SQL;
CREATE TABLE Sales AS

SELECT Region FORMAT $RegFmt100.,
Product,
SUM(Stores) AS Stores,
SUM(Sales) AS Sales,
SUM(Inventory) AS Inventory,
SUM(Returns) AS Returns

FROM Shoes
GROUP BY Region, Product
ORDER BY Region, Product;

QUIT;

Call the %paginateCLI macro to add the pagination data to the dataset. Note that the
cell width passed to the macro is equal to the sum of the widths of the columns that
the headers will span.

%paginateCLI(indata=Sales,
varlist=Region,
colwidths=11.5cm,

logfile=%str(&srs_sasdir.special_processing_SRSPaginator.log))

Because the %paginateCLI macro does not make allowance for the spanning row
headers, the pagination data returned by default must be slightly modified:

DATA Sales;
RETAIN _Page 0 _LinesLeft 0;
SET Sales (DROP=_Page _RowHeight _RowHeightUnits);
BY Region;
IF FIRST.Region AND (_LinesLeft LT (8 + _RowLines)) THEN DO;

_Page = _Page + 1;
_LinesLeft = 30;

END;
_LinesLeft = _LinesLeft - 1;
IF FIRST.Region THEN DO;

_LinesLeft = _LinesLeft - _RowLines;
_RowLines = _RowLines + 1;

END;
ELSE _RowLines = 1;

RUN;

Print the full dataset to the listing file to verify that the data is correct (in this case we
can’t add the validation columns to the table, as this would increase the width of the
table and so affect the word wrapping of the spanning headers).

ODS LISTING CLOSE;
ODS RTF FILE="special_processing.rtf" STYLE=Styles.LandscapeA4;
PROC REPORT DATA=Sales SPLIT="*";

COLUMN _Page Region Product Stores Sales Inventory Returns;
DEFINE _Page/ORDER NOPRINT;
DEFINE Region/ORDER NOPRINT;
DEFINE Product/DISPLAY "Product"

STYLE=[CELLWIDTH=3.5cm INDENT=0.5cm];
DEFINE Stores/DISPLAY "Number*of stores" STYLE=[CELLWIDTH=2cm];
DEFINE Sales/DISPLAY "Total sales" FORMAT=DOLLAR10.

STYLE=[CELLWIDTH=2cm];

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-40

All material copyright © 2006 Insight Statistical Consulting Ltd

DEFINE Inventory/DISPLAY "Inventory*value" FORMAT=DOLLAR10.
STYLE=[CELLWIDTH=2cm];

DEFINE Returns/DISPLAY "Returns*value" FORMAT=DOLLAR10.
STYLE=[CELLWIDTH=2cm];

COMPUTE BEFORE Region/STYLE=[JUST=LEFT FONT_WEIGHT=BOLD];
LINE Region $RegFmt.;

ENDCOMP;
BREAK AFTER _Page/PAGE;
TITLE "Summary of the SASHELP.Shoes dataset";

RUN;
ODS RTF CLOSE;

In passing, note that the spanning row headers are created not by the DEFINE
statement for the Region variable, but by the associated COMPUTE block. Also note the
use of the INDENT style attribute, which is new in SAS 9, to obtain an indentation
without having to resort to raw RTF code.

5.7 Master-detail presentations: two tables on one page

Source file: master_detail.sas
Output file: master_detail.rtf
SAS log file: master_detail.log
SRS Paginator log file: master_detail_SRSPaginator.log
SRS Formatter log file: master_detail_SRSFormat.log

This example will use the case of adverse event data collected during a clinical trial to
illustrate how The SRS Pagination Suite can easily be used to create attractive master-
detail, or one-to-many, presentations.

In this example, simple demographic information will be presented in a small header
table immediately above the main listing table containing details of each adverse
event experienced by the subject. The number of adverse events experienced by each
subject is unknown, and may flow over more than one page. When more than one
page is required to present the information for an individual patient, the ehader table
should be repeated at the top of each page, and a continuation footnote should appear
on each page save the last. In addition, the space required to present each adverse
event may also vary.

Begin by calling the %paginateCLI macro to claculate the space required to render
each adverse event in the table. In this example, it is obvious that the space required
by each observation will be defined by the space required to print the AEText variable.
Therefore, for simplicity, this is the only variable that is passed to the Paginator.

%paginateCLI(indata=DATA.MasterDetail,
outdata=MasterDetail,
outdir=&srs_sasdir,
logfile=&srs_sasdir.master_detail_SRSPaginator.log,
varlist= AEText,
colwidths=7cm,
tableht=9cm)

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-41

All material copyright © 2006 Insight Statistical Consulting Ltd

The value of the tableht parameter has been chosen to allow for the space required
to print the header table and the table titles and footnotes on a page in landscape
orientation.

Currently, the header table and the main body table must be created separately. (The
advent of a usable tagset-based RTF style in version 9.3 may change this.) Therefore,
separate the header data from the that needed for the main body.

DATA _Detail (KEEP=_Page PID AEText FromDate ToDate Severity
Related Causality Serious Ongoing)

_Master (KEEP=_Page PID Drug BDate Sex Age Stroke);
SET MasterDetail END=E;
BY _Page;
IF FIRST._Page THEN OUTPUT _Master;
OUTPUT _Detail;
IF E THEN CALL SYMPUT("NPAGES", COMPRESS(PUT(_Page, BEST.)));

RUN;

Separate calls to the REPORT procedure will be used to create the master and detail
tables. This means that the data contained in both the _Master and _Detail tables
will need to be subsetted for presentation. This is most easily done in a simple macro.
Moreover, the SRSFormatter assumes that when a page with titles but no footnotes is
followed by a page with footnotes but no titles, then this is a signal that the tables on
the two pages have a master-detail relationship and the page break between the two
pages should be removed. Therefore the TITLEs and FOOTNOTEs will need to be reset
before each REPORT procedure call.

Start to define the macro. Set the page orientation, close the LISTING destination and
open the RTF destination.

%macro do_it;
OPTIONS ORIENTATION=LANDSCAPE;
ODS LISTING CLOSE;
ODS RTF FILE="&srs_sasdir.master_detail.rtf"

STYLE=styles.LandscapeA4;

For each page in the listing…

%do i=1 %to &npages;

…work out if the continuation footnote is required.

%let cont=0;
%if &i lt &npages %then %do;

PROC SQL NOPRINT;
SELECT PID INTO :P1 FROM _Master WHERE _Page EQ &i;
SELECT PID INTO :P2 FROM _Master WHERE _Page EQ %eval(&i+1);

QUIT;
%let cont=%eval(&p1 eq &p2);

%end;

Prepare for, and then create, the master table.

TITLE1 "Listing of adverse events";

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-42

All material copyright © 2006 Insight Statistical Consulting Ltd

FOOTNOTE1;
PROC REPORT DATA=_Master (WHERE=(_Page EQ &i));

COLUMN PID Drug BDate Sex Age Stroke;
DEFINE PID/DISPLAY;
DEFINE Drug/DISPLAY;
DEFINE BDate/DISPLAY;
DEFINE Sex/DISPLAY;
DEFINE Age/DISPLAY;
DEFINE Stroke/DISPLAY;

RUN;

Prepare for the detail table.

TITLE1;
%if &cont %then %do;

FOOTNOTE1 J=L ITALIC "Patient continues overleaf...";
FOOTNOTE2 J=R "Page &i of &npages";

%end;
%else %do;

FOOTNOTE1 J=R "Page &i of &npages";
%end;

And print the detail table.

PROC REPORT DATA=_Detail (WHERE=(_Page EQ &i));
COLUMN AEText FromDate ToDate Severity Related Causality

Serious Ongoing;
DEFINE AEText/DISPLAY STYLE=[CELLWIDTH=7cm];
DEFINE FromDate/DISPLAY;
DEFINE ToDate/DISPLAY;
DEFINE Severity/DISPLAY LEFT;
DEFINE Related/DISPLAY LEFT;
DEFINE Causality/DISPLAY LEFT;
DEFINE Serious/DISPLAY LEFT;
DEFINE Ongoing/DISPLAY LEFT;

RUN;

Close the RTF destination and re-open the LISTING destination.

ODS RTF CLOSE;
ODS LISTING;

Call the SRSFormatter to reformat the file.

X "SRSFormat.exe -in ""&srs_sasdir.master_detail.rtf""
-log ""&srs_sasdir.master_detail_SRSFormat.log""";

Reset the page orientation and end the macro definition.

OPTIONS ORIENTATION=PORTRAIT;
%mend;

Finally, call the macro.

%do_it

Examination of the master_detail.rtf file will reveal that it is in the required format.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-43

All material copyright © 2006 Insight Statistical Consulting Ltd

The information in the SRSFormatter log file shows the Formatter detected the
master-detail relationships correctly:

Processing section 1...
Sections 1 and 2 form a master/detail pair.

Processing section 2...
Sections 2 and 3 form a master/detail pair.

5.8 Using the –sepcols command line parameter

Source file: sepcol_demo.sas
Output file: sepcol_demo.rtf
SAS log file: sepcol_demo.log
SRS Paginator log file: Not applicable
SRS Formatter log file: sepcol_demo_SRSFormatter.log

The –sepcols command line parameter allows you to introduce vertical separators
between some of the columns in a table. This is not possible using native ODS
features. This example shows how to use the SRSFormatter to do this for you.

The table summarises the severity of adverse events experienced by patients in a
clinical trial. The procoessing of the data prior to producing the table is omitted: the
AESeverity dataset holds the contents of the table as it will appear. The REPORT
procedure call is not directly relvant to the use of the –sepcols command line
parameter, but it does contain a few useful REPORT procedure tricks, which will be
explained at the end of this section.

After producing the output RTF file in the usual way, the call to the SRSFormatter
includes the parameters -sepcols (1,7), indicating that a single vertical line should
appear on the right-hand edges of the first and seventh columns from the left-hand
edge of the table. These lines should extend through both the table body and header.
The first column is labelled “Body system/preferred term” and the seventh is the one
labelled “Sev” and appears in the “Control treatment” spanning group.

The SRSFormatter produces a table which looks, in part, like this:

Figure 5: An extract from sepcol_demo.rtf, illustrating the effect of the -sepcols command line
parameter

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-44

All material copyright © 2006 Insight Statistical Consulting Ltd

The –sepcols command line parameter has created the desired visual effect. However,
note that the second vertical separator stops at the top of the bottom line of the table
header. This is because the first two lines do not have a seventh column as a result of
the spanning headers that they contain.

It is worth noting that the use of the –sepcols, -bsepcols or –hsepcols command
line parameters slows the performance of the SRSFormatter considerably. To
demonstrate this, the –fulltimer command line option was added to the call to the
SRSPaginator in sepcol_demo.sas. The following extract from the corresponding
log file shows that the use of –sepcol has increased the time taken to process page 1 of
the output file by a factor of about five.

Processing section 2...
Time taken to add column separators: 25.922s.
Time taken to reformat table: 30.343s.

Time to process section: 30.531s.

There are a couple of interesting features of the REPORT procedure call that produces
the table shown above. The first is the use of the <style-attribute>=<SAS format> in
some of the column definitions. For example:

DEFINE Pct1/DISPLAY "%" FORMAT=F6.1 STYLE=[FOREGROUND=ForeFmt.];

This syntax says that, for example, the value of the FOREGROUND style attribute is not
fixed, but instead is defined by applying the ForeFmt. format to the value of Pct1 in
each observation. The ForeFmt. format (defined in define formats.sas) has the
following definition:

VALUE ForeFmt .="WHITE" OTHER="BLACK";

In other words, the foreground colour should be black if a non-missing value is found
and white otherwise. Thus, the full stops usually used to represent missing numeric
values can be suppressed.

An extension of this technique can be found in the COMPUTE block associated with the
AEP variable. In this case, the values of a different variable is used to define a style
attribute for the AEP variable. In this case, the need is to print body system headers in
bold and preferred terms within body system indented by 0.5cm. The input dataset is
organised so that the value of AEP is set to the value of BodySystem for the first
observation within each body system group. The following code snippet achieves the
desired effect.

COMPUTE AEP;
IF AEBody EQ AEP THEN

CALL DEFINE(_COL_, "STYLE", "STYLE=[FONT_WEIGHT=BOLD]");
ELSE

CALL DEFINE(_COL_, "STYLE", "STYLE=[INDENT=0.5cm]");
ENDCOMP;

6 The Client/Server Utility

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-45

All material copyright © 2006 Insight Statistical Consulting Ltd

The SRS Pagination Suite includes a basic client/server implementation to allow the
suite to be run remotely. This makes the reformatting facilities of the SRS Formatter
avialable on any node of a network on which at least one Windows based node is
available, regardless of the operating system that an individual node is running.

6.1 Installing the client/server utility

The server executables (SRSServer.exe and SRSServer.sh) is located in The SRS
Pagination Suite’s installation directory. No further installation steps are necessary.

The client executables (SRSClient.exe and SRSClient.sh) is also placed in The SRS
Pagination Suite’s installation directory. To install the client on a client host, simply
copy the appropriate executable, together with the client.jar JAR file, to a folder
on the client host.

To install the client on a host running an operating system other than Microsoft
Windows, Unix or Linux, copy the client.jar JAR file to the client host and write a
shell file that runs it.

6.2 Running the server process

The SRS Pagination Suite server is invoked with the following command:

<srsserver> <command line paramaters>

where

<srsserver> is SRSServer.exe on Windows, SRSServer.sh on
Unix and Linux, or the appropriate user-supplied
shell file on other operating systems.

<command line parameters> are as described below.

The command line parameters recognised by The SRS Pagination Suite server are
defined in Section 6.3 below.

6.3 Parameters of the server process

6.3.1 -port <port number>

Required. Defines the port on which the server should listen for incoming server
requests. Default 4444.

6.3.2 -debug <n>

Optional. Sets the debug level, which controls the amount of information written to
the server log file. Default 3.

The table below summarises the information written to the log for various values of
-debug:

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-46

All material copyright © 2006 Insight Statistical Consulting Ltd

Debug
level Information provided

0 Initiation, termination, error and warning messages
Client connection and disconnection
Client connection validation failure

1 Addition and removal of a job to the job queue
2 Not used
3 Notification of starting a job

The command used to execute a job
Notification of the successful completion of a job

4 Before execution of a job, list the command line parameters as received by the
server

5 Monitoring of parameter requests as they are received from the client

Table 6: Debug settings for the SRS Pagination Suite server

6.3.3 -log <log file name>

Optional. Specifies the name of the server log file. The default name is
SRSServer_<hostname>_<username>_<date/time>.log

where

<hostname> is the name of the host on which the server process is running,
<username> is the name of the user who set the server process running and
<date/time> is the date and time at which the server process started, in the format

yyyymmdd_hhmmss.

6.3.4 -srsformat <file name>

Optional. Defines the path to the SRSFormat executable. Default SRSFormat.exe.
Since the SRS formatter installer adds the installation directory to the Windows path
variable, this should be sufficient to locate the file.

6.3.5 -srspaginate <file name>

Optional. Defines the path to the SRSPaginator executable. On Windows systems,
the default is SRSPaginateCLI.exe. Otherwise, the default is SRSPaginate.sh.

Note to Windows users: as the SRS Paginator installation routine is designed
to be generic across operating systems, it does not modify the windows path.
Therefore, the default value of –srspaginate will not be sufficient to locate
the executable file unless either (a) you have subsequently modified the value
of the PATH environment variable to include the SRS Paginator’s installation
directory or (b) you installed the paginator in a folder that was already
included in the PATH environment variable.

**** Question to beta testers: what is the situation on Unix/Linux?

6.3.6 –echo

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-47

All material copyright © 2006 Insight Statistical Consulting Ltd

Requests that output produced by SRSFormat or SRSPaginator jobs is echoed to the
server log as well as to the log file for the individual job. The default is –noecho.

See also: -noecho.

6.3.7 –noecho

Requests that output produced by SRSFormat or SRSPaginator jobs is not echoed to
the server log as well as to the log file for the individual job. This is the default.

See also: -echo.

6.4 The SRS server log file

Entries in the server log file are time stampled and, when not gnerated by the main
server thread, include a prefix that indcates the thread that generated them. The
information contained in the log is best explained by a series of examples.

6.4.1 Example 1: A single conncetion request

In this first example, the server is started, a single job is received from a client and the
server is then terminated.

The first four lines are standard. They indicate the name of the log file, the name of
the host and the port on which server is listening for connections.

13Apr2006 17:37:04 **** NOTE: Log file is 'D:\Program Files
\Insight\SRS Pagination
Suite\SRSPaginator\SRSServer_Insight2_John_20060413_173704.log'.
13Apr2006 17:37:04 **** NOTE: SRS Server v1.0 started at 13Apr2006
17:37:04.
13Apr2006 17:37:05 **** NOTE: Listening for SRS Client connections on
Insight2, port 4444.
13Apr2006 17:37:05 **** NOTE: Hit <ENTER> to terminate.

The next two lines indicate that a connection attempt has been received and a server
thread has been started to service the request. The second line indicates that the client
has successfully transmitted its request and dropped the connection. The time
between the two messages – less than a second – is typical as the client requests are
extremely siimple.

13Apr2006 17:37:23 [Server thread 0] **** NOTE: Connection from
INSIGHT1 [192.168.0.3] accepted.
13Apr2006 17:37:24 **** NOTE: Connection closed at client request.

Next, the sever thread adds the job request to its job queue. This triggers the job
queue monitor thread, which is currently idle, to request the server thread to pass the
job to the job queue monoitor thread. The second line indicates that the server thread
has done so.

13Apr2006 17:37:24 Added job 'Bert' to the queue. There is now 1 job
pending.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-48

All material copyright © 2006 Insight Statistical Consulting Ltd

13Apr2006 17:37:24 Removed job 'Bert' from the queue. There are now
0 jobs pending.

The next message are generated by the job queue monitor and indicate that an SRS
Formatter process has successfully been created.

13Apr2006 17:37:24 [Job queue monitor] Starting formatter job 'Bert'.

When the SRS Formatter job completes, the job queue monitor reports this fact and
then shuts down.

13Apr2006 17:37:57 [Job queue monitor] Job 'Bert' completed without
error. Size of job queue is now: 0

Finally, the sever acknowledges the user’s shut down request.

13Apr2006 17:38:21 **** NOTE: Termination request received.

6.4.2 Example 2: A second connection request arrives before the first job has
completed

The log file starts in exactly the same way as the previous example.

13Apr2006 17:53:54 **** NOTE: Log file is 'D:\Program Files
\Insight\SRS Pagination
Suite\SRSPaginator\SRSServer_Insight2_John__20060413_175353.log'.
13Apr2006 17:53:54 **** NOTE: SRS Server v1.0 started at 13Apr2006
17:53:54.
13Apr2006 17:53:54 **** NOTE: Listening for SRS Client connections on
Insight2, port 4444.
13Apr2006 17:53:54 **** NOTE: Hit <ENTER> to terminate.

13Apr2006 17:54:03 [Server thread 0] **** NOTE: Connection from
INSIGHT1 [192.168.0.3] accepted.
13Apr2006 17:54:04 **** NOTE: Connection closed at client request.

13Apr2006 17:54:04 Added job 'Bert' to the queue. There is now 1 job
pending.
13Apr2006 17:54:04 Removed job 'Bert' from the queue. There are now
0 jobs pending.
13Apr2006 17:54:04 [Job queue monitor] Starting formatter job 'Bert'.

At this point, a second client request is received and processed by a new server thread.
(The server thread index only takes account of the threads that are running
concurrently.)

13Apr2006 17:54:18 [Server thread 0] **** NOTE: Connection from
INSIGHT1 [192.168.0.3] accepted.
13Apr2006 17:54:18 **** NOTE: Connection closed at client request.

13Apr2006 17:54:18 Added job 'Eric' to the queue. There is now 1 job
pending.

A short while later, the first job completes successfully.

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-49

All material copyright © 2006 Insight Statistical Consulting Ltd

13Apr2006 17:54:33 [Job queue monitor] Job 'Bert' completed without
error. Size of job queue is now: 1

This allows the job monitor queue to start processing the second job request.

13Apr2006 17:54:33 Removed job 'Eric' from the queue. There are now
0 jobs pending.
13Apr2006 17:54:33 [Job queue monitor] Starting formatter job 'Eric'.

Again, this completes without error.

13Apr2006 17:55:01 [Job queue monitor] Job 'Eric' completed without
error. Size of job queue is now: 0

And finally the server is terminated by the user.

13Apr2006 17:55:08 **** NOTE: Termination request received.

6.4.3 Example 3: Two client requests arrive almost simultaneously

**** To be completed.

6.5 Running a client process

An SRS client process is executed by a SAS job in a similar way to running the SRS
Paginator or SRS Formatter locally. That is, by using a SAS X command with the
following format:

<srsclient> <command line paramaters>

where

<srsclient> is SRSClient.exe on Windows, SRSClient.sh on
Unix and Linux, or the appropriate user-supplied
shell file on other operating systems.

<command line parameters> are as described in section 6.6 below.

6.6 Parameters of the SRS client utility

The command line parameters recognised by The SRS Pagination Suite client are
described in the follwing subsections. Any other pramaters found on the command
line are passed to the SRS server and are used as parameters to the job that the server
is requested to run.

Note: when file names are passed to the server, they must be specified using
paths that are valid for the server’s environment. For example, if a user on
host Insight1 requests that test.rtf on local drive F: is to be reformatted,
the correct syntax is

-srsformatter –in \\Insight1\F\test.rtf

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-50

All material copyright © 2006 Insight Statistical Consulting Ltd

6.6.1 -server <servername>

Required. The name of the server on which the SRS server is currently running.

6.6.2 -port <port number>

Required. Default: 4444. The port on which the SRS server is currently listening.

6.6.3 -debug <debug level>

Optional. Default: 3. The debug level with which the client should run.

Debug
level Information provided

0 Error and warning messages.
1 Not used
2 Not used
3 Shows the acknowledgement of the request from the server.
4 Not used
5 Logs each command line parameter as it is sent to the server.

6.6.4 -clientlog <client log file name>

Optional. The name of the file to which the client log is to be written. The default log
file name is

SRSClient_<username>_<date/time>.log

where

<username> is the name of the user invoking the client,

<date/time> is the date and time at which the client was invoked, in the format
yyyymmdd_hhmmss.

6.6.5 –srsformat

Specifies that the client is requesting the server to run the SRS Formatter.

6.6.6 -srspaginate

Specifies that the client is requesting the server to run the SRS Paginator.

6.6.7 -bye

Required. Signals to the SRS server that no more parameters are forthcoming. Thus,
this must be the final paramter on the command linepassed to the server. This
parameter is supplied by the client automatically.

6.6.8 -srsformatter

The SRS Pagination Suite User Guide

Saved: 12 May 2006 01:38:00 Page 2-51

All material copyright © 2006 Insight Statistical Consulting Ltd

Optional. Signifies that the client is requesting an SRS Formatter job. Exactly one of
–srsformatter and –srspaginator must be present.

6.6.9 -srspaginator

Optional. Signifies that the client is requesting an SRS Paginator job. Exactly one of
–srsformatter and –srspaginator must be present.

6.7 The client log file

The SRS Client utility provides an extremely simple log file. Here is an example of a
log file showing a sucessful connection request:

[13Apr2006 16:32:45] **** NOTE: Connected to Insight2 on port 4444.
[13Apr2006 16:32:51] Server responded with 'Thank you'.
[13Apr2006 16:32:51] **** NOTE: Disconnected from Insight2.
[13Apr2006 16:32:51] **** NOTE: Done.

The second line shows the server’s acknowledgement of a properly formatted request.

If the server is not running at the time the client requests a connection, a log file
similar to the following is created:

[13Apr2006 17:24:00] **** FATAL ERROR: Unable to get I/O stream for
server 'Insight2', port 4444.

6.8 The SRS client/server utility: examples

**** To be completed ****

6.9 Licencing the client/server utility

The SRS Pagination Suite’s client/server utility is freeware. No fee is payable to
licence it. However, you must still agree to abide by the terms of The SRS Pagination
Suite’s End User Licence Agreement (EULA) before using any part of The SRS
Pagination Suite.

The SRS Pagination Suite itself is licenced software. You will need a separate licence
for each server on which it is installed.

7 Trouble shooting

Error 1904. Module C:\WINNT\system32\mstcf.dll failed to register. HRESULT –
2147024769. Contact your support personnel.

